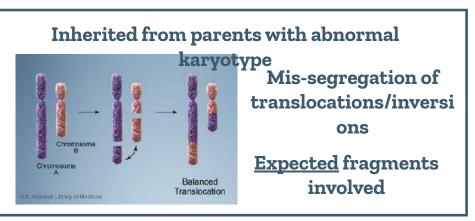
Segmental aneuploid embryos and management strategies for

transfer

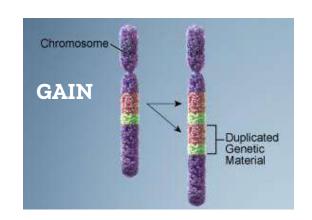
Laura Girardi PhD,

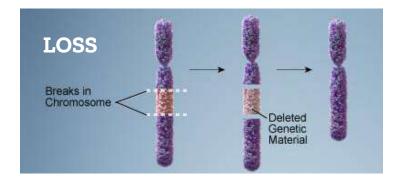
- Scientific Support Manager, EMEIA, Igenomix Part of Vitrolife Group
- Università degli Studi dell'Aquila-Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente
- SIERR: Interest Group Reproductive Genetics

Backfound anddefinitions



Brokground


SEGMENTAL ANEUPLOIDIES in PGT


Sub-chromosomal copy number changes involving the gain or loss of a portion of the chromosome

- No clear embryologic phenotype
- The majority occur de novo in the embryo, involving any of the 24 chromosomes

5-10Mb Resolution in PGT

Igenomix[®]

Frequency of segmental ancupioidies in oocytes and preimplantation embruos

Incidence of segmental aneuploidles in control cleavage and blastocyst stage embryos

Human Reproduction, Vol.32, No.12 pp. 2549-2560, 2017

Advanced Access publication on November 8, 2017 doi:10.1093/humrep/dex324

human reproduction	ORIGINAL ARTICLE Reproductive genetics
-----------------------	--

The incidence and origin of segmental aneuploidy in human oocytes and preimplantation embryos

D. Babariya^{1,2,*}, E. Fragouli^{1,2}, S. Alfarawati¹, K. Spath^{1,2}, and D. Wells^{1,2}

The prevalence of SA <u>decreases</u> as the embryo progresses through its developmental stages

The rates of segmental aneuploidies peak in early mitotic divisions

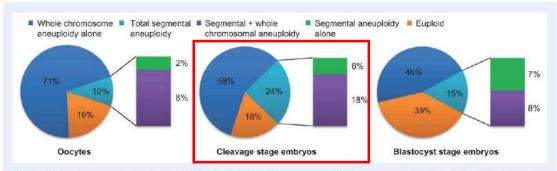


Figure 3 The frequency of segmental aneuploidy increased significantly from oocytes to the cleavage stage embryos but decreased from cleavage to blastocyst stages. Most of the segmental imbalances occurred along with other whole chromosomal aneuploidies with 8.4% (38/452) in oocytes, 18.4% (352/1762) in cleavage stage embryos and 8.1% (108/1327) at blastocyst stage. It was rare to see segmental aneuploidies occurring alone in oocytes (9/452; 1.99%) however, this was seen significantly more often at the cleavage (103/1762; 5.85%; P = 0013) and blastocyst stages (99/1327; 7.46%; P = 0.0001). No significant difference was observed in the occurrence of segmental aneuploidy alone between cleavage and blastocyst stage embryos.

	Incide	ence of SA in blastocyst-stage en	nbryos		
Reference	Total no. of blastocysts	SA-positive blastocysts	Incidence of SA	Platform	15%
McCarty et al., 2022 (27) Babariya et al., 2017 (28)	89,226 1,327	2,766 207	3.10% 15.60%	NGS aCGH	
legs et al., 2021 (18)	2.110	186	8.82%	tNGS	→
scriba et al., 2019 (26)	3,565	299	8.39%	NGS	
ore et al., 2019 (30)	377	20	5.31%	aCGH	
ubicek et al., 2019 (17)	967	54	5.58%	Karyomapping	
echitsky et al., 2020 (35)	14,992	2,099	14.00%	NG5	
irardi et al., 2020 (24)	8,137	653	8.03%	NGS	
uffardi et al., 2022 (31)	1,501	79	5.26%	NGS	
falard et al., 2022 (32)	182,827	20,557	11,.24%	FAST-SeqS	
Robberecht et al., 2021 (33)	1,708	97	5.68%	NG5	•
Zhou et al., 2018 (25)	2,095	206	9.83%	NGS	•
Xie et al., 2022 (21)	15,411	2,273	14.75%	NG5	

314

Picchetta et al. F&S Science, 2023

3,118

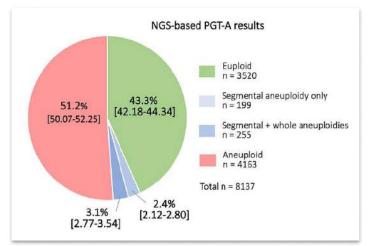
3,628

Dviri et al., 2020 (34)

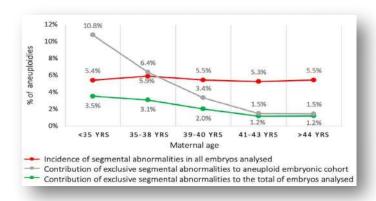
Insua et al., 2018 (29)

Mean incidence of 5A

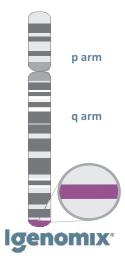
Mean incidence of SA 8.5%


3%

NGS

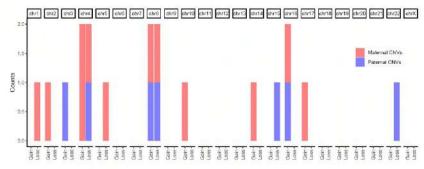

3.34%

8.65%


8.51%

- SA's incidence does not increase with maternal age
- SA appear to be more frequent in the q arm
- SA are more frequently telomeric then interstitials

Impact of segmental aneuploidies in Interstages of development


• In PRENATAL DIAGNOSIS

Mean incidence 3.5%

		Prenatal incidence of SA		
Reference	Analyzed samples	SA-positive samples	Incidence of SA	Platform
Breman et al., 2012 (65)	1,115	43	3.80%	CMA
Farcas et al., 2013 (66)	528	12	2.27%	Karyotype/FISH
Levy et al., 2014 (67)	1,861	43	2.30%	SNP array
Shen et al., 2016 (68)	436	23	5.30%	aCGH and NGS
Sahoo et al., 2017 (69)	7,396	181	2.40%	SNP array/aCGH
Wang et al., 2018 (16)	3,398	41	1.20%	CNV-Seq
Peng et al., 2019 (70)	836	40	4.80%	aCGH
Lin et al., 2020 (71)	10,377	223	2.10%	SNP array
Kowalczyk et al., 2022(72)	7,400	579	7.80%	aCGH
Mean incidence of SA			3.55%	

Picchetta et al. F&S Science, 2023

• In PREGNANCY LOS: 1.3%
Size: 200kb-100Mb

Arnadottir, G.A., Jonsson, H., Hartwig, T.S. et al. Sequence diversity lost in early pregnancy. Nature (2025).

• In the FETUS:

0.45%*

Schlaikjær Hartwig, 2023, Lancet

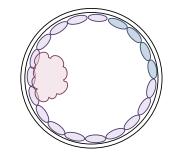
• **A**t

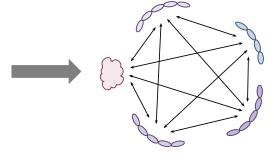
BIRTH:
PART OF VITROLIFE GROUP

0.015%*

Extrapolated from UK Biobank

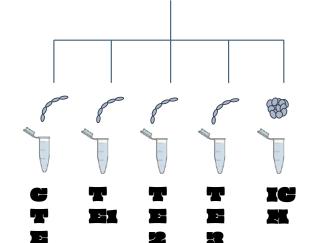
Exture and origin of segmental ancuploidies in PGT




Cell divisions origin of aneuploidies: multifocal biopsies in the research

DESIGNITEM Dryo disaggregation models and NES-based Pet-A analysis

misiri PCT-R PCSUIS: <u>SCEMCHSRI</u> RECUDICION

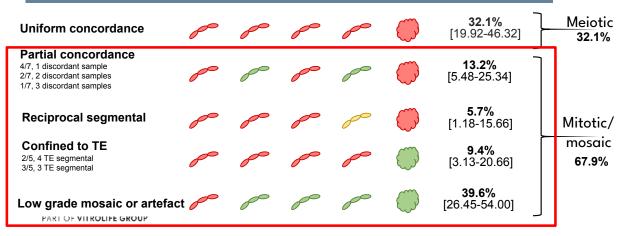


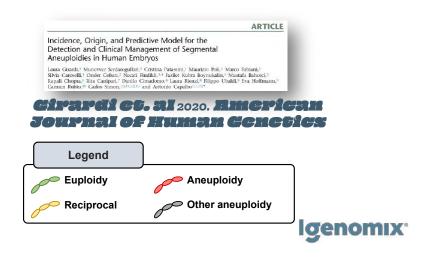
embryos donated for research

muitifocal biopsies

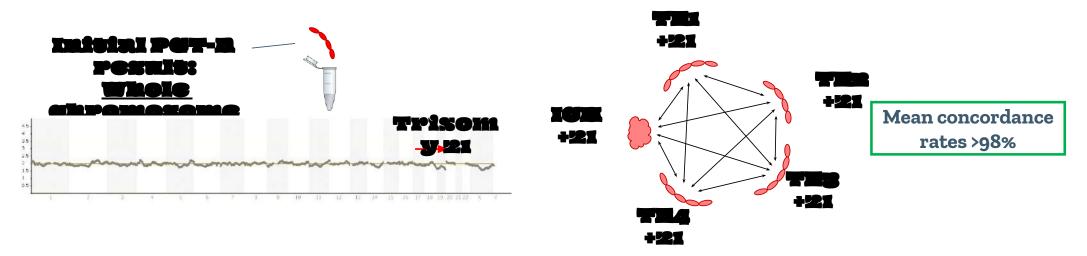
PART OF VITROLIFE GROUP

Igenomix[®]


Cell divisions origin of aneuploidies: multifocal biopsies in the research setting


Concordance rate of SA finding	s in PGT-A.			
	Concordance rate of SA in PGT-A			
Reference	Platform	Embryo stage	Concordance rate	Absolute values
Chuang et al., 2018 (47)	NGS	Blastocyst	55.50%	5/9
Popovic et al., 2019 (48)	NGS	Outgrowth 12 dpf	38.46%	5/21
Victor et al., 2019 (49)	NGS	Blastocyst	44.40%	4/9
Lawrenz et al., 2019 (50)	NGS	Blastocvst	16.70%	1/6
Navratil et al., 2020 (46)	NGS	Blastocyst	36.80%	14/38
Girardi et a., 2020 (24)	NGS	Blastocyst	32.10%	17/53
Sachdev et al., 2020 (51)	NGS	Blastocyst	0	0/12
Kim et al., 2021 (11)	NGS	Blastocyst	21.30%	36/196
Mean concordance rate	-		30.66%	

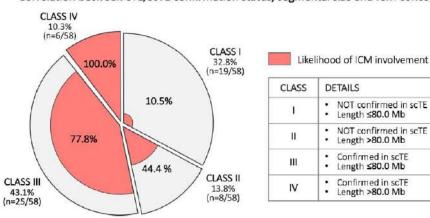
Mean concordance rates ~30%


Picchetta et al. F&S Science, 2023

SEGMENTAL ANEUPLOIDIES CONFIGURATIONS

Cell divisions origin of whole chromosome anemploidies

- Concordance rates of SA bewteen multiple TE biopsies as well as vs ICM are significantly reduced compared to whole chromosome aneuploidies
- Different etiology for subchromosomal alterations: more frequently mitotic in nature, arising during the first embryonic cell divisions. Mosaic in preimplantation embryos

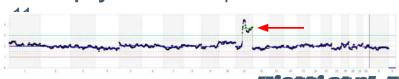

How to move to the clinical setting: additional parameters to better classify sa

Clinical application of a risk stratification

model

Length of the region Re-blop Sy

Correlation between cTE/scTE confirmation status, segmental size and ICM concordance


Girardi et al, AJHG 2020

Re-biopsying the embryo can be an option for obtaining a more reliable clinical diagnosis if a SA is

Re-biopsy, euploid transfer and pregnancy follow-up

(WGA)-based NGS PGT-A

1st Biopsy: 82.5 Mb duplication on chr

2nd Biopsy: Euploid

2025 pecialized

Genetic counselling + specialized informed consent outlining the associated risks

Embryo

At week 13, ***#APISE*** ntesis was performed

Cytogenetic **46,XX**

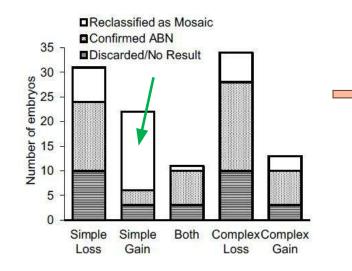
SNP microarray arr(X,1-22) × 2

Igenomix

PART OF VITROLIFE GROUP

detected in PGT

How to move to the clinical setting: additional parameters to better classify SA


Clinical re-biopsy and type of alteration: gains vs losses

Journal of Assisted Reproduction and Genetics (2022) 39:1313-1322 https://doi.org/10.1007/s10815-022-02487-z

GENETICS

Clinical re-biopsy of segmental gains—the primary source of preimplantation genetic testing false positives

Steve Grkovic 10 - Maria V. Traversa 1 - Mark Livingstone 1 - Steven J. McArthur 1

72.7% simple **segmental gains** were reclassified as mosaic (vs 22.6% of single loss)

ARTICLE

Incidence, Origin, and Predictive Model for the Detection and Clinical Management of Segmental Aneuploidies in Human Embryos

Laura Girardi.' Munevver Serdarogullari, de Cristina Patassini, daurizio Poli, da Murco Fabiani, dilva Caroselli, Onder Coban, decari Findibili, de Faziler Kubra Boynushini, dustafa Bahreci, supali Chopra, Rita Canipari, Danilo Cimadomo, da Laura Rienzi, Pilipop Ubaddi, de ya Hoffmann, Carmen Rubio, 10 Carlos Simon, 10,113-12-13 and Antonio Capalbo

seemental fains vs 74% segmental losses

MONOSOMIES are more likely to be confirmed in a 2nd biopsy and in the ICM

SEGMENTAL

Transfer outcomes of non-mosale segmental aneuploidles

A multicenter, prospective, blinded, nonselection study evaluating the predictive value of an aneuploid diagnosis using a targeted next-generation sequencing—based preimplantation genetic testing for aneuploidy assay and impact of biopsy

Ashley W. Tiegs, M.D., A.^{b.} Xin Tao, Ph.D., Yiping Zhan, Ph.D., Oiristine Whitehead, R.N., Aulia Kim, M.D., A.^{b.} Brent Hanson, M.D., A. Standard, A.D., A. Thomas J. Kim, M.D., George Patourakis, M.D., Ph.D., Joscueline Gutmann, M.D., Arthur Castelbaum, M.D., Entre Sell, M.D., A. Chaim Jales, and Richard T. Scott R., M.D., A.^{b.}

Design: <u>Non-selection study</u>

PCT-A platform/technology: target NCS

Number of embryos transfer: 39 embryos with uniform segmental aneuploidies

Sustained implantation rate : yo.3? (n=12/39)

Design: Retrospectivitow-up: no

PCT-A platform/technology: NCS, SNP array, Array CSh

Number of embryos transfer: **ny** embryos with non-mosaic segmental aneuploidies

Live birth rate : 24.0% (n=6/25)

Pronatal testing: 4/6 live birth tested and normal (CVS, Amnio or cedum) Journal of Assisted Reproduction and Genetics https://doi.org/10.1007/s10815-024-03282-8

ASSISTED REPRODUCTION TECHNOLOGIES

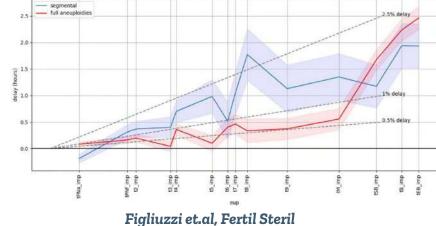
Healthy live births achieved from embryos diagnosed as non-mosaic segmental aneuploid

Andria Besser¹ • Emily Weidenbaum² · Julia Buldo-Licciardi² · Caroline McCaffrey¹ · James Grifo¹ · Jennifer Blakemore¹

What do we know about transfer outcomes of uniform whole chromosome aneuploidies

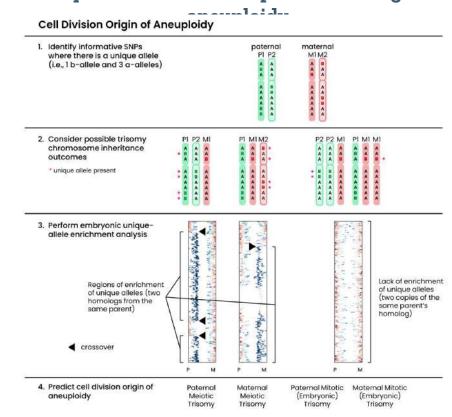
Study	Design	Transfers of uniformly aneuploid embryos n ^a	Miscarriage rate % (n, 95% CI)	Lethality rate % (n, 95% CI)
Scott et al., 2012 (45)	blinded	95	33.3% (2/6) (4.3%–77.7%) ^b	95.8% (91/95) (84.5%–99.4%)
Tiegs et al., 2021 (40)	blinded	102	100% (24/24) (85.8%–100%)	100% (102/102) (96.5%–100%)
Wang et al., 2021 (41)	blinded	44	75.0% (6/8) (34.9%–96.8%)	95.5% (42/44) (84.5%–99.4%)
Yang et al., 2022 (44)	blinded	6	100% (6/6) (54.1%–100%)	100% (6/6) (54.1%–100%)
Barad et al., 2022 (46)	unblinded	106	85.7% (6/7) (42.1%–99.6%)	99.1% (105/106) (94.9%–99.9%)
Total	N/A	353	86.3% (44/51) (73.7%–94.3%)	98.0% (346/353) (96.0%–99.2%)

^bPost-transfer polar body analysis revealed likely mitotic (mosaic) origin of the aneuploidy detected through PGT-A.


98%

Research and future perspectives

Adding time-lapse and morphokinetic analysis to predict segmental aneuploid embryos


Blastocysts with SA and WCA exhibit a delay in reaching the expanded blastocyst-stage compared with euploid.

SA embryos have a <u>distinct morphokinetic signature</u>

2025

Segmental score: specificity 92.5% sensitivity 20.0%

Adding genotyping data and parental DNA analysis in PGT to better predict the origin of

Concinatons and management strategies for transfer

Conclusions and management strategies for transfer

Historically, embryos diagnosed as segmental aneuploid have been categorized alongside whole chromosome aneuploid embryos and considered unsuitable for transfer. Sa should be considered as a separate category compared to WCA and should be subjected to different interpretation and ad-hoc management strategies.

MANAGEMENT STRATEGIES FOR UNIFORM SEGMENTAL ANEUPLOIDIES

- ☐ Deletions/duplications can be associated with a <u>wide range of phenotypes</u>: genetic syndromes, embryonic lethality, miscarriage, no clinical consequences
- ☐ Transfer outcomes of uniform segmental aneuploidies are limited but…transfer "may be considered" as 25-30% success rate is significantly different from <1% of uniform WCA
- The assessment of a second TE biopsy can enhance predictivity on ICM constitution and empowering the decision-making process
- Risks associated with double round of <u>re-biopsy</u> and vitrification should considered and commented

All patients should receive genetic counselling and close

THREE FOR YOUR ATTENTION