

Optimizing vitrification and warming protocols

Ioannis Sfontouris M.Med.Sci, PhD

Director of Embryology Laboratory - Hygeia IVF Embryogenesis Athens

Clinical Associate Professor – University of Nicosia

Progressive increase in the use of FET relative to fresh IVF/ICSI cycles in Europe (EIM 2019 data)

Cryopreservation is a game changer in ART

- Oocyte freezing for social and medical reasons
- Supernumerary embryos
- PGT cycles
- Prevention of OHSS
- Elective single embryo transfer (eSET)
- High PRG suboptimal endometrium
- Elective freeze-all

Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance

Laura Rienzi^{1,*}, Clarisa Gracia², Roberta Maggiulli¹, Andrew R. LaBarbera³, Daniel J. Kaser⁴, Filippo M. Ubaldi¹, Sheryl Vanderpoel^{5,6}, and Catherine Racowsky⁴

- **Higher CPR** embryo vitrification compared with slow-freezing, (RR = 1.89, 95% CI: 1.00–3.59; P = 0.051; three RCTs; $I^2 = 71.9\%$). 3 RCTs
- **Higher LBR** for embryo vitrification compared to slow-freezing (RR = 2.28; 95% CI: 1.17-4.44; P = 0.016; 216 cycles; one RCT).
- Better embryo cryosurvival with vitrification compared with slow-freezing (RR = 1.59, 95% CI: 1.30-1.93; P < 0.001; $I^2 = 93\%$). 7 RCTs

Oocyte cryopreservation: vitrification vs slow

Higher ongoing pregnancy rate per cycle using vitrification RR = 2.81, 95% CI: 1.05–7.51; P = 0.039

Higher ongoing pregnancy rate per oocyte warmed using vitrification RR = 1.14, 95% CI: 1.02–1.28; P = 0.018

Oocyte cryopreservation: vitrification vs slow

Better cryo-survival using vitrification (83.2%) vs slow freezing (66.1%)

Techniques used in embryo cryopreservation

Vitrification vs slow freezing

Blastocyst collapse

Type of vitrification carrier (open or closed)

Loading volume

Post-thaw culture prior to transfer

Semi-automated vitrification

Composition of cryoprotectant solutions

Cleavage-stage vs blastocyst

Degree of blastocyst expansion

Assisted hatching post-thaw

Cochrane review in preparation

Sfontouris IA, Makris A, Barbosa MWP, Storr A, Raine-Fenning N, Hart RJ, Venetis C, Martins WP.

Techniques for human embryo cryopreservation

Cochrane Database of Systematic Reviews, CD009589

In preparation

- 37 RCTs
- 19 comparisons were identified in published RCTs

Slow freezing vs vitrification - Live birth

- Similar LBR with slow freezing vs vitrification
- No RCT reporting LBR to compare slow vs vitrification of blastocysts

Slow freezing vs vitrification - Miscarriage

• Similar miscarriage rate with slow freezing vs vitrification

Open vs closed vitrification – Live birth

	Closed s	system	Open s	ystem		Risk ratio	Risk ratio		Ri	isk	of E	ias	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	M-H, Random, 95% CI	Α	В	С	D	E I	G
✓ Amo 2013	48	135	119	325	22.6%	0.97 [0.74 , 1.27	7]	?	? (•	? (? ?
✔ Balaban 2007 (1)	39	101	27	96	12.3%	1.37 [0.92 , 2.06	5]	•		•	?	Ð (
✔ Hashimoto 2013	44	100	74	163	21.5%	0.97 [0.73 , 1.28	3]	?	?	•			? ?
✓ Kim 2017	39	107	50	101	17.8%	0.74 [0.54 , 1.01	1]	?	?	•	0		? ?
✔ Panagiotidis 2013	84	224	80	208	25.9%	0.97 [0.77 , 1.24	1] —	•	?	•	•		? ?
Total (95% CI)		667		893	100.0%	0.97 [0.83 , 1.13	3]						
Total events:	254		350										
Heterogeneity: Tau ² =	0.01; Chi ²	= 5.73, di	f = 4 (P = 0).22); l² =	30%		0.5 0.7 1 1.5 2	-					
Test for overall effect:	Z = 0.44 (F	P = 0.66				Fav	ours Open system Favours Clo	sed syst	em				
Test for subgroup diffe	erences: No	t applica	ble										

• Similar LBR with open and closed vitrification carriers

Open vs closed vitrification - Miscarriage

	Closed s	system	Open s	ystem		Risk ratio	Risk ratio	Risk of Bias
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	ABCDEFG
✓ Amo 2013 (1)	12	60	30	149	59.8%	0.99 [0.55 , 1.81]	×	? ? • ? • ? ?
✔ Balaban 2007	4	43	3	30	10.6%	0.93 [0.22, 3.86]		● ● • ? ● ● •
✓ Kim 2017 (2)	6	45	7	57	20.7%	1.09 [0.39, 3.00]		?? • • • ??
✔ Panagiotidis 2013	2	87	7	89	9.0%	0.29 [0.06 , 1.37]		9 ? 9 9 9 ? ?
Total (95% CI)		235		325	100.0%	0.90 [0.57 , 1.43]		
Total events:	24		47				\mathbf{T}	
Heterogeneity: Tau ² =	0.00; Chi ²	= 2.31, d	f = 3 (P = 0	0.51); I ² =	0%		0.05 0.2 1 5 20	7
Test for overall effect:	Z = 0.45 (F	P = 0.66	•			Favours	Closed system Favours Ope	
Test for subgroup diffe	erences: No	t applica	ble					

Similar miscarriage with open and closed vitrification carriers

Artificial blastocyst shrinkage vs no intervention

Live birth

Clinical pregnancy

	Shrini	kage	No inter	vention		Risk ratio	Risk ratio		F	Risk	of	Bia	s
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	Α	В	C	D	E	F
✓ Gala 2014	32	67	43	118	64.7%	1.31 [0.93 , 1.85]		•	?	•	•	•	?
✓ Van Landuyt 2015	26	69	21	69	35.3%	1.24 [0.78 , 1.98]	-						•
Total (95% CI)		136		187	100.0%	1.28 [0.97 , 1.70]	6						
Total events:	58		64				¥*						
Heterogeneity: Tau ² =	0.00; Chi ²	= 0.04, df	f = 1 (P = 0)).85); I ² =	0%	0.0	01 0.1 1 10 1	oo o					
Test for overall effect:	Z = 1.76 (P	(80.0 = 0.08)				100	Intervention Favours Shrii						
Test for subgroup diffe	erences: No	t applical	ble										

Artificial blastocyst shrinkage vs no intervention Miscarriage

Similar miscarriage with blastocyst shrinkage vs no intervention

Laser vs mechanical blastocyst shrinkage Clinical pregnancy

- Higher CPR using laser shrinkage vs mechanical
- Data on Live birth and miscarriage not reported in any RCT

FET same day vs overnight culture – Live birth

FET same day vs overnight culture – Miscarriage

	Overn	ight	Same	day		Risk ratio	Risk ratio		J	Ris	k of	f Bia	ıs	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	A	В	С	D	E	F	G
5.3.1 Cleavage stage														
✓ Jin 2013	10	96	14	95	38.1%	0.71 [0.33 , 1.51]		•	?	•	•	•	?	?
Subtotal (95% CI)		96		95	38.1%	0.71 [0.33 , 1.51]								
Total events:	10		14											
Heterogeneity: Not applicable)													
Test for overall effect: Z = 0.8	9 (P = 0.37	')												
5.3.2 Blastocyst stage														
✓ Herbemont 2018	5	36	6	34	18.5%	0.79 [0.26, 2.34]		•	?	•	•	•	?	?
✓ MagdiAbd-Elkreem 2020	13	130	14	119	43.4%	0.85 [0.42, 1.73]		?	?	?	•		?	•
Subtotal (95% CI)		166		153	61.9%	0.83 [0.46 , 1.51]								
Total events:	18		20											
Heterogeneity: Tau ² = 0.00; C	$chi^2 = 0.01$,	df = 1 (P	= 0.91); I ²	$^{2} = 0\%$										
Test for overall effect: Z = 0.6														
Total (95% CI)		262		248	100.0%	0.78 [0.49 , 1.25]								
Total events:	28		34											
Heterogeneity: Tau2 = 0.00; C	chi² = 0.12,	df = 2 (P	$= 0.94); I^2$	2 = 0%			0.2 0.5 1 2 5	- 16E						
Test for overall effect: Z = 1.0	3 (P = 0.30))				Fa	avours Overnight Favours Sar	ne day						
Test for subgroup differences	: Chi ² = 0.1	1, df = 1	(P = 0.74)	$I^2 = 0\%$			340	1965						

Pronuclear vs blastocyst vitrification Live birth

	PI	1	Blasto	ocyst		Risk ratio	Risk ra	atio		F	Risk	of	Bia	s	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Randor	m, 95% CI	Α	В	С	D	Ε	F	G
✓ Shapiro 2015	44	71	38	69	100.0%	1.13 [0.85 , 1.49]	I	ľ	•	+	+	+	•	?	?
Total (95% CI)		71		69	100.0%	1.13 [0.85 , 1.49]		ķ.							
Total events:	44		38				Y								
Heterogeneity: Not ap	plicable						0.01 0.1 1	10 100							
Test for overall effect:	Z = 0.83 (F	P = 0.41)				Fa	avours Blastocyst	Favours PN							
Test for subgroup diffe	erences: No	ot applica	ble												

Similar LBR

Pronuclear vs blastocyst vitrification Miscarriage

	Cleav	age	Blasto	ocyst		Risk ratio	Risk ratio	Risk of Bias
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95%	CI A B C D E F G
✓ Shapiro 2015	7	47	5	41	100.0%	1.22 [0.42 , 3.56]	-	• • • • • ? ?
Total (95% CI)		47		41	100.0%	1.22 [0.42 , 3.56]		
Total events:	7		5					
Heterogeneity: Not ap	plicable						0.01 0.1 1 10	100
Test for overall effect:	Z = 0.37 (F	P = 0.71				Fa	vours Cleavage Favour	rs Blastocyst
Test for subgroup diffe	erences: No	ot applica	ble					

• Similar miscarriage rate

Early vs expanded blastocyst vitrification Live birth

	Early Blas	tocysts	Expanded Bla	stocysts		Risk ratio	Risk ratio		F	Risk	of I	3ias	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	Α	В	С	D	E	FG
✔ Rama Raju 2009	68	281	40	193	100.0%	1.17 [0.83 , 1.65]		?	?	•	•	•	? ?
Total (95% CI)		281		193	100.0%	1.17 [0.83 , 1.65]	•						
Total events:	68		40				Y						
Heterogeneity: Not ap	plicable					0.0	1 0.1 1 10	100					
Test for overall effect:	Z = 0.88 (P =	= 0.38)					rs Expanded Favours Ea						
Test for subgroup diffe	erences: Not	applicable											

Similar LBR

Early vs expanded blastocyst vitrification Miscarriage

	Early Blas	tocvsts	Expanded Bla	astocvsts		Risk ratio	Risk	ratio		R	lisk	of I	3ias	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Rando	om, 95% CI	Α	В	С	D	E	F
✔ Rama Raju 2009	23	107	16	62	100.0%	0.83 [0.48 , 1.45]	-	ŀ	?	?	•	•	•	? (
Total (95% CI)		107		62	100.0%	0.83 [0.48 , 1.45]	å	•						
Total events:	23		16			57×1 10 12	20 No.							
Heterogeneity: Not ap	plicable						0.01 0.1	10	100					
Test for overall effect:	Z = 0.64 (P =	= 0.52)					Favours Early	Favours Ex						
Test for subgroup diffe	erences: Not	applicable												

Similar miscarriage

Small vs large cryoprotectant loading volume Live birth

Similar LBR – approaching significance in favour of small volume

Small vs large cryoprotectant loading volume Miscarriage

Similar miscarriage

Manual vs semi-automated (Gavi) vitrification

Live birth

Clinical pregnancy

- Similar LBR
- Data on miscarriage not reported

Slush N₂ vs liquid N₂

Clinical pregnancy

Early pregnancy loss

	Slush ni	itrogen	Liquid n	itrogen		Odds ratio	Odds r	atio		R	isk (of Bi	as	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Randor	m, 95% CI	A	В	С	D E	F	G
✓ Klimczak 2021	0	20	1	22	100.0%	0.35 [0.01 , 9.08]	_		?	?	?	?	?	?
Total (95% CI)		20		22	100.0%	0.35 [0.01, 9.08]								
Total events:	0		1											
Heterogeneity: Not ap	plicable					· (0.01 0.1 1	10	100					
Test for overall effect:	Z = 0.63 (F	P = 0.53				eman construction	s slush nitrogen	Favours lic		en				
Test for subgroup diffe	erences: No	ot applica	ble											

- Similar LBR
- Data on LBR not reported

Low O2 (5%) vs ultra-low O2 (2%) in post-thaw culture Clinical pregnancy

- Similar CPR
- Data on LBR and miscarriage not reported

Assisted hatching post-thaw – Live birth

No significant benefit of AH after warming

Assisted hatching post-thaw - Miscarriage

No difference in miscarriage rate

Quality of data

- Small number of RCTs for each technique
- High degree of heterogeneity between studies
- Low quality of data
- Still unsure whether there is a beneficial effect of any of these techniques
- Numerous observational and retrospective studies may suggest significant effects
- More well-designed RCTs are necessary
- Choice of techniques largely depends on laboratory set-up and personal preference

Summary of findings

Interventions	Outcomes
Vitrification vs slow freezing	Similar LBR and misc. RCT using blastocysts not identified
Open vs closed vitrification	Similar LBR and misc.
Artificial blastocyst shrinkage vs no intervention	Similar LBR and misc.
Laser vs mechanical blastocyst shrinkage	Laser is better
Pronuclear vs cleavage vitrification	Similar LBR and misc.
Early vs expanded blastocyst vitrification	Similar LBR and misc.
FET same day vs overnight culture	Higher LBR with overnight culture. Similar misc.
Small vs large loading volume	Trend for higher LBR (NS) with small volume. Similar misc.
Manual vs semi-automated vitrification	Similar CPR and LBR
Slush N ₂ vs liquid N ₂	Similar CPR and EPL
Low O2 (5%) vs ultra-low O2 (2%)	Similar CPR
Assisted hatching vs no intervention	Similar LBR and misc.

Ultra-fast freezing and warming

- Gallardo et al. (2019): simulated oocyte osmotic behaviour to cryoprotectant solution
- Equilibrium can be achieved in much shorter times (3—60 sec) similarly to traditional exposure (9-15 min).
- Showing feasibility of ultra-fast vitrification

Oocyte ultra-fast freeze and warming

Α.

Fast oocyte vitrification procedure 90 mm dish | RT | total time: 2 min WS ES VS (100 μL) (200 μL) (2x100 μL) (rinse briefly) (1 min) (1 min) 3. 1. 2. 4.

В.

Blastocyst ultra-fast freeze and warming

Fast blastocyst vitrification procedure 90 mm dish | RT | total time: 5 min ES VS (50 µL) (100 µL) (2x100 µL) (rinse briefly) (4 min) (1 min)

Fast blastocyst warming procedure

90 mm dish | 37° C | total time: 1 min

Fast and furious blastocyst rehydration

ARTICLE · Volume 48, Issue 4, 103731, April 2024

Fast and furious: pregnancy outcome with one-step rehydration in the warming protocol for human blastocysts

Juergen Liebermann $\overset{\circ}{\sim}$ $^{\alpha}$ $\overset{\boxtimes}{\boxtimes}$ · Kristina Hrvojevic b · Jennifer Hirshfeld-Cytron a · Rebecca Brohammer a · Yuri Wagner a · Alexis Susralski a · Sue Jasulaitis a · Shu Chan b · Eden Takhsh b · Meike Uhler a Show less

ARTICLE · Articles in Press, 104874, March 03, 2025

Do faster, do better: frozen embryo transfer outcomes with one-step warming protocol at different embryos stages

- Similar survival rate, similar CPR
- · Higher ongoing pregnancy using fast warming vs multi-step warming
- Lower miscarriage rate using fast warming
- Shorter time using fast warming

Ultra-fast vitrification and warming of oocytes

- Studies using in-vitro matured MI/GV oocytes
- >95% survival with ultra-fast protocol (Liebermann 2024)
- Higher survival with ultra-fast (98%) compared to standard protocol (83.3%) (Wozniak 2025)
- Benefit of reduced exposure to room temperature, and shorter time of procedure.

Universal embryo warming

ARTICLE · Articles in Press, 104923, March 09, 2025 · Open Access

Universal post-warming dilution of vitrified embryos: impact of different vitrification/warming kits, warming volume and rapid dilution/rehydration steps on survival and clinical outcomes

Lodovico Parmegiani A Gabor Vajta 3 · Colleen Lynch 4 · Alessandra Arnone 1 · Silvia Bernardi 1 · Antonio Manuel Maccarini 1 · Sara Lanzilotti 1 · Azzurra Rastellini 1 · Enzo Troilo 1 · Elena Nardi 5 · Walter Ciampaglia 1

Table 1	LCS2 - Combinat	ions of differen	t kits. Number	of warming	cycles per group

Vitrification kit used	Group IFU -S	Group USSW- I	Group USSW - K	Group USSW - S	Group USSW - V
Kitazato - vitrification media VT601	11	48	2	20	3
Sage - vitrification kit ART-8026	6	31	3	11	5
Fuji Film Irvine - Vit Kit Freeze 90133-SO	5	16	0	7	2
Total	22	95	5	38	10

- Possible to combine various kits for vitrification/warming
- Possible to perform the universal single-step warming (USSW) with any warming kit brand.

ARTICLE · Articles in Press, 104923, March 09, 2025 · Open Access

Universal post-warming dilution of vitrified embryos: impact of different vitrification/warming kits, warming volume and rapid dilution/rehydration steps on survival and clinical outcomes

 $\begin{tabular}{ll} Lodovico Parmegiani \mathcal{L}^1 $\boxtimes \cdot$ Gabor Vajita $^{23} \cdot$ Colleen Lynch $^4 \cdot$ Alessandra Arnone $^1 \cdot$ Silvia Bernardi $^1 \cdot$ Antonio Manuel Maccarini $^1 \cdot$ Sara Lanzilotti $^1 \cdot$ Azzurra Rastellini $^1 \cdot$ Enzo Troilo $^1 \cdot$ Elena Nardi $^5 \cdot$ Walter Ciampaglia 1 and $^2 \cdot$ Walter Ciampaglia $^3 \cdot$ Colleen Lynch $^3 \cdot$ Colleen Lynch $^4 \cdot$ Alessandra Arnone $^3 \cdot$ Colleen Lynch $^4 \cdot$ Colleen Lynch $^4 \cdot$ Alessandra Arnone $^3 \cdot$ Colleen Lynch $^4 \cdot$ Alessandra Arnone $^3 \cdot$ Colleen Lynch $^4 \cdot$ Colleen Lync$

Table 2 LCS1 – Outcome measures (Survival rate, Clinical Pregnancy rate, Embryo

Implantation rate, Live Birth rate)

	Group KK	Group KS	Group KI	Group SK	Group SS	Group SI	Group IK	Group IS	Group II	Group HK	Group HS	Group HI	
Mean female age (± SD) at warming Survival %	37.6±4.5	37.2±4.3	37.9±4.3	38.0±5.2	37.5±5.1	37.6±5.0	38.1±4.7	37.5±5.3	37.0±4.7	37.1±4.0	37.3±5.2	37.1±4.2	Age
(No. of surviving embryos/ warmed embryos) Clinical	100% (237/237)	99.7% (307/308)	99.7% (285/286)	99.5% (189/190)	99.8% (531/532)	99.8% (531/532)	100% (70/70)	100% (229/229)	100% (292/292)	100% (134/134)	100% (110/110)	100% (124/124)	Survival
Pregnancy % (Presence of a gestational sac / No. embryo transfers)	39% (78/200)	39.6% (103/260)	40.8% (95/233)	47.0% (70/149)	41.4% (173/418)	36.1% (108/299)	36.2% (21/58)	36.4% (67/184)	38.2% (89/233)	37.8% (34/90)	34.5% (29/84)	36% (32/89)	Clinical pregnancy
Embryo Implantation % (No. of gestational sacs/ transferred embryos) Live Birth	35% (83/237)	37.5% (115/307)	35.1% (100/285)	39.7% (75/189)	35.4% (188/531)	33.1% (124/375)	31.4% (22/70)	31.4% (71/226)	33.8% (99/292)	29.9% (40/134)	29.1% (32/110)	29% (36/124)	Implantation
% (No. of pregnancies leading to births / embryo transfers)	32.5% (65/200)	31.2% (81/260)	27.0% (63/233)	34.9% (52/149)	30.1% (77/299)	27.8% (83/299)	27.6% (16/58)	29.3% (54/184)	28.8% (67/233)	28.9% (26/90)	27.4% (23/84)	29.2% (26/89)	Live birth
No. of babies born	70	87	64	56	139	97	17	59	74	29	24	29	Babies

P-Value NS Exceptions (mean female age at Mann-Whitney Rank Sum Test): KT (37 9 ± 4 3) vs SS (37 5± 5 1) P=0 040 vs II (37 0± 4 7) P=0 012

New methods of vitrification Ultra-fast and universal warming

- Higher efficiency
- Flexibility
- Time-saving
- Improved workflow in the lab
- Proof of concept successful
- Time to move to prospective clinical studies

Thank you!